Forschungsinstitut für
Nachhaltigkeit | am GFZ

Using low-cost sensors to gather high resolution measurements of air quality in urban environments and inform mobility policy

Luftverschmutzung ist seit hundert Jahren ein anhaltendes globales Problem. Während sich die Luftqualität in einigen Industrieländern durch strengere Vorschriften verbessert hat, hat sie sich in anderen Ländern im Zuge der schnell fortschreitenden Industrialisierung verschlechtert. Die Aktualisierung der von der WHO für das Jahr 2021 empfohlenen Grenzwerte für die Luftverschmutzung spiegelt die erheblichen Aus-wirkungen von Schadstoffen wie Stickstoffdioxid (NO2) und Ozon (O3) auf die menschliche Gesundheit wider, da neuere epidemiologische Erkenntnisse darauf hindeuten, dass Luft-verschmutzung selbst bei niedrigen Konzentrationen erhebliche langfristige gesundheitliche Auswirkungen hat. Parallel zu den Entwicklungen in unserem Verständnis der gesundheitlichen Auswirkungen von Luftverschmutzung wurde die neue Technologie der Low-Cost-Sensoren (LCS) sowohl von der Wissenschaft als auch von der Industrie als neue Methode zur Messung der Luftverschmutzung aufgegriffen. Vor allem aufgrund ihrer geringeren Kosten und kleineren Größe können sie in einer Vielzahl von Anwendungen eingesetzt werden, u. a. bei der Entwicklung von Messnetzen mit höherer räumlicher Auf-lösung, bei der Identifizierung von Quellen und bei der Messung der Luftverschmutzung. Es wurden zwar erhebliche Anstrengungen unternommen, um LCS mit Hilfe von Referenzinstrumenten und verschiedenen statistischen Modellen genau zu kalibrieren, aber die Genauigkeit und Präzision bleiben durch die variable Sensorempfindlichkeit begrenzt. Darüber hinaus gibt es immer noch keine Standardverfahren für die Kalibrierung, und die meisten proprietären Kalibrierungsalgorithmen sind Blackboxen, die für die Öffentlichkeit nicht zugänglich sind. Mit dieser Arbeit soll die Wissensbasis über LCS auf verschiedene Weise erweitert werden: 1) durch die Entwicklung einer Open-Source-Kalibrierungsmethodik; 2) durch den Einsatz von LCS mit hoher räumlicher Auflösung in städtischen Umgebungen, um ihre Fähigkeit zur Messung kleinräumlicher Veränderungen der städtischen Luftverschmutzung zu testen; 3) durch die Verknüpfung von LCS-Einsätzen mit der Umsetzung lokaler Verkehrsmaßnahmen, um politische Empfehlungen zu den daraus resultierenden Veränderungen der Luftqualität geben zu können. In einem ersten Schritt wurde festgestellt, dass LCS mit Hilfe von sieben allgemeinen Schritten konsistent und mit guter Leistung gegenüber Referenzinstrumenten kalibriert werden können: 1) Bewertung der Rohdatenverteilung, 2) Datenbereinigung, 3) Kenn-zeichnung von Daten, 4) Modellauswahl und -abstimmung, 5) Modellvalidierung, 6) Export der endgültigen Vorhersagen und 7) Berechnung der damit verbundenen Unsicherheit. Durch die Betonung der Notwendigkeit einer konsistenten Berichterstattung über Details bei jedem Schritt, insbesondere bei der Modellauswahl, -validierung und -leistung, hat diese Arbeit die Bemühungen um eine Standardisierung der Kalibrierungs-methoden vorangetrieben. Darüber hinaus wurden mit der Open-Source-Veröffentlichung von Code und Daten für die siebenstufige Methodik Fortschritte bei der Reformierung der weitgehenden Blackbox-Natur von LCS-Kalibrierungen erzielt. Nach der Einführung einer transparenten und zuverlässigen Kalibrierungsmethode wurden die LCS zwischen 2017 und 2020 an verschiedenen Straßen eingesetzt. Unter Ver-wendung von zwei Arten von LCS, Metalloxid (MOS) und elektrochemisch (EC), wurde ihre Leistung bei der Erfassung der erwarteten Muster der NO2- und O3-Belastung in Städten bewertet. Die Ergebnisse zeigten, dass die kalibrierten Konzentrationen der MOS- und EC-Sensoren mit den allgemeinen Tagesmustern der NO2- und O3-Belastung überein-stimmten, die mit Referenzgeräten gemessen wurden. Während sich MOS als unzuverlässig erwies, wenn es darum ging, Unterschiede zwischen den gemessenen Orten inner-halb der städtischen Umgebung zu erkennen, entsprachen die mit kalibrierten EC-Sensoren gemessenen Konzentrationen den Erwartungen aus Modellierungsstudien zur Verteilung der NO2- und O3-Belastung in Straßenschluchten. Daraus wurde der Schluss gezogen, dass LCS für die Messung der Luftqualität in Städten geeignet sind, auch zur Unterstützung der Entwicklung von Luftverschmutzungsmodellen auf städtischer Ebene, und dass sie neue Erkenntnisse über die Luftverschmutzung in städtischen Umgebungen liefern können. Um das letzte Ziel dieser Arbeit zu erreichen, wurden zwei Messkampagnen im Zusammenhang mit der Umsetzung von drei verkehrspolitischen Maßnahmen in Berlin durchgeführt. Bei der ersten handelte es sich um den Bau einer Pop-up-Radweg auf dem Kottbusser Damm als Reaktion auf die COVID-19-Pandemie, bei der zweiten um die vorübergehende Einrichtung eines Gemeinschaftsraums in der Böckhstraße und bei der letzten um die Sperrung eines Teils der Friedrichstraße für den gesamten motorisierten Verkehr. In allen Fällen wurden NO2-Messungen vor und nach der Durchführung der Maßnahme durchgeführt, um die Veränderungen der Luftqualität infolge dieser Maßnahmen zu bewerten. Die Ergebnisse des Experiments am Kottbusser Damm zeigten, dass die NO2-Konzentrationen, denen die Radfahrer ausgesetzt waren, durch den Radweg um 22 ± 19 % gesenkt wurden. In der Friedrichstraße sank die NO2-Konzentration durch die Straßensperrung auf das Niveau des städtischen Hintergrunds, ohne dass sich die Luft-qualität in den Seitenstraßen verschlechterte. Diese wertvollen Ergebnisse wurden den verantwortlichen Ansprechpersonen in der Stadtverwaltung, die für die Bewertung des Erfolgs und der Zukunft der Maßnahmen verantwortlich sind, schnell mitgeteilt, was die Fähigkeit von LCS unterstreicht, politisch relevante Ergebnisse zu liefern. Da es sich um eine neue Technologie handelt, muss noch viel über LCS und ihren Wert für die akademische Forschung im Bereich der Atmosphärenwissenschaften gelernt werden. Dennoch hat diese Arbeit den Stand der Technik in mehrfacher Hinsicht verbessert. Erstens wurde eine neuartige Open-Source-Kalibrierungsmethode entwickelt, die von LCS-Anwenderinnen für verschiedene Luftschadstoffe verwendet werden kann. Zweitens wurde die Beweisgrundlage für die Zuverlässigkeit von LCS zur Messung der Luftqualität in Städten gestärkt, indem durch neuartige Einsätze in Straßenschluchten festgestellt wurde, dass LCS mit hoher räumlicher Auflösung zum Verständnis der Dynamik der Luftverschmutzung auf kleinräumlicher Ebene eingesetzt werden kann. Schließlich ist es die erste Studie dieser Art, die LCS-Messungen direkt mit verkehrspolitischen Maßnahmen verknüpft, um deren Einfluss auf die lokale Luftqualität zu verstehen, was zu politisch relevanten Erkenntnissen führt, die für Entscheidungsträgerinnen wertvoll sind. Die Studie ist ein Beispiel für das Potenzial von LCS, unser Verständnis von Luftverschmutzung in verschiedenen Maßstäben zu erweitern, sowie für ihre Fähigkeit, als wert-volle Werkzeuge in der transdisziplinären Forschung zu dienen.

Publikationsjahr

2023

Zitation

Schmitz, S. (2023). Using low-cost sensors to gather high resolution measurements of air quality in urban environments and inform mobility policy. PhD Thesis, Universität Potsdam, Potsdam. doi:0.25932/publishup-60105.

DOI

0.25932/publishup-60105
Share via email

Copied to clipboard

Drucken